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A pragmatic entropy and differential entropy
estimator for small datasets

Jugurta Montalvao, Romis Attux, and Daniel Silva,

Abstract—A pragmatic approach for entropy estimation is points of view. Indeed, the key event in any entropy mea-
presented, first for discrete variables, then in the form of @  surement is the coincidence of symbols in a sample. Strictly
extension for handling continuous and/or multivariate ones. It speaking, any histogram-based estimator relies on cancl

is based on coincidence detection, and its application leadto t . hist bi ti incid h
algorithms with three main attractive features: they are eay to counters, since histogram bins quantify coincidences ohea

use, can be employed without anya priori knowledge concerning Symbol in a stream of symbols. However, usifg coin-
source distribution (not even the alphabet cardinality K of cidence detectors can be problematic. For instance, if the

discrete sources) and can provide useful estimates even whe number of available samples is less than histogram-based
the number of samples,, is less thank, for discrete variables, agtimators are expected to perform badly, since at least one
whereas plug-in methods typically demandV >> K for a proper S . . . .
approximation of probability mass functions. Experiments done commdenc_e Coum?r IS not Inc_remented at all, thus indgicin
with both discrete and continuous random variables illustate Strong estimator bias and variance. For small data sets and
the simplicity of use of the proposed method, whereas numeral  discrete random variables, Bonachela et al. (2008) propose
comparisons to other methods show that, in spite of its simpdity, ~a method to balance estimator bias and variance, along with
useful results are yielded. a very interesting point of view that elegantly links exigfi
Index Terms—Entropy through coincidence, Small datasets, methods such as Miller's and Grassberger's to their own
Discrete and/or continuous variables, Uncomplicated algithms.  approach.
By contrast, an entropy method of estimation through co-
incidences was proposed by Ma (1980), in a journal paper,
I. INTRODUCTION and re-explained in a book by the same author (Ma, 1985,
HE entropy of discrete random sources is a pivotal mattef. 25) as a ‘method (...) in the stage of development’ to
in Information Theory (IT). The concept was definede used in Statistical Mechanics. This author also dissusse
by Shannon and generalized by R’enyi’s set of parametriz@@ interesting link between IT and Statistical Mechaniaos, i
measurements (Rényi, 1961). In both cases, the definifionhich he points out that ‘In information theory the number of
entropy depends upon the probability associated with ea@¥mbols is very small and each symbol is used many times’
Symbo] used by the source. Thus, when it comes to entro‘ﬁg that probabilities ‘can be accurately determined.’” Itswa
estimation, a straightforward first step is to estimate symbcertainly the general perception by the time his book was
probabilities, whose representations we recognize as @mniritten. Nonetheless, in some hard problems involving ksoc
histograms In other words, whenever we need to estimatf symbols, which may occur in practical domains ranging
entropy, a natural approach is to take as many samplesf@n multiple-input and multiple-output digital systems t
possible to build histograms and then to use these histagrdage-scale data mining, even small sets of symbols may lead
as probability estimators in Shannon's or Rényi's formuld0 problems of entropy estimation with a huge number of
These approaches are known as plug-in methods (Beirlansttes. In other words, nowadays, we conjecture that Ma-lik
al., 1997). methods can also be attractive for problems belonging to a
Besides the well-known entropy estimation bias (Millevariety of domains, wherever phenomena with a huge number
1955), a remarkable issue of plug-in methods is that oféreachable states are observed.
must first estimatés probabilities, wherex is the number of ~ This seems to be the motivation behind the method proposed
symbols used by the source. As a consequence, for high val@¥dNemenman et al. (2002), where entropy estimation through
of K (h|gh Cardina”ties), and/or when some Symbo|s a'@incidence counting was elegantly revisited in the cantex
associated with very low probabilities, a possibly profidei Of an information-theoretical analysis of neural respsnse
number of samples may be necessary to provide reliaiféemenman et al., 2004). Not surprisingly, they highligie t
estimations, not to mention thaf must be known in advance. benefits of such an approach when the number of samples is
Motivated by these practical limitations of plug-in metispd smaller than the number of states — the same motivation in
an interesting question can be formulated as: can we gef rid\da’s work.
histograms in entropy estimation? Fortunately, the anssver Nemenman (2011) further analyses this estimator previ-

‘ves'. And this answer brings together a series of intengsti ously proposed by himself and collaborators, in 2002. His
analysis, to a certain extent, bridges the gap betweenmntro
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priori knowledge of the cardinality of the alphabet size is not D)
necessary. It is noteworthy that it allows for the estimatio 50
of differential entropies, where cardinalities tends tbnity.
Unfortunately, in spite of this open possibility, the arssg
method was not adapted to continuous random variables. By %0
following the same path, in (Montalvao et al., 2012) we thyie
proposed a simpler method (for discrete variables onlyktvhi
can be used without any knowledge of the cardinality of the 10
alphabet size, and is simple enough to be easily employed |
even by experimenters unfamiliar with the theoretical basfe R0 T e e T e A R Y
statistical estimation.

In this paper, we extend this method toward continuo(r§: 1. Average number of symbolé), drawn from a white source ok

L . . . equiprobable symbols until a first coincidence occurs.

multivariate random sources, keeping, however, simplioit
use as aleitmotiv, along with the method’s suitability of
use with small datasets. In order to properly introduce thifuadratic functional dependence, which can be suitably ap-
method extension, in Section Il, we first recall the methogroximated as in Eq. 3.
proposed in (Montalvao et al., 2012), along with some new )
theoretical explanations of an important approximatioadus K~g(D)=aD”+bD +c ®3)
there and an analysis of the computational burden assdciate|ndeed, through squared error minimization, we obtain
with it. Experimental results with discrete random varesbl ( 6366, b = —0.8493 and ¢ = 0.1272, which yields a Mean
are presented in Section Ill. The method generalizatiofciwh squared Error betweek and g(D) of about10~6, inside
as already stated, is the main novelty brought forward is thhe interval D(1) = 2 to D(2000) ~ 56.7. This polynomial

work, is presented in Section IV, whereas experimentalt®suapproximation is a key aspect of the method proposed here.
with continuous random variables are presented in Section VOn the other hand, in Shannon’s definition of entropy,

A section devoted to the conclusions and to a final discussigg well as in Rényi's generalization, whenever all the
closes the paper. symbols of a memoryless random source are equiprobable,
the source entropy, in bits, equdlss,(K). In other words,
Il. PROPOSED METHOD FOR ENTROPY ESTIMATION the entropy,H, of a given non-equiprobable source informs
s that there is an “equivalent” source 2 equiprobable
aE%émbOIS' By keeping this in mind, we now may consider again

40,

20!

Instead of counting coincidences of each symbol, as
histogram-based approaches, we address entropy estim e non-equiprobable source of symbols. Clearly, we stym

by detecting any coincidence of symbols. For memoryleem rically estimated by sequentially observin mbols and
random sources, this unconstrained coincidence detetdion pricaily esti y sequentially observing sy S

closely related to the classical ‘Birthday Problen’, prese averaging the number of symbols until a coincidence ocas's,

in textbooks of probability (Papoulis, 2002). By generialig 'E Figure 2. Ac\ghgugh t?.ﬁ som_Jr;:es tarehno I?ngr elqurobabble
this problem, letk” be the number of equiprobable symbols — iLbﬁemiaSrg;eoﬁ% Oer?]bsoll 22;; coou Ic? r)(/)p?)keetlr?: e(;JrUIp;Om-e
they are independently drawn from this source, the proibabil sou sy S u'd prov Very s

of repeating one or more symbols by thdéh sample is given average mtervall. Thus, we conjecture that .
by: Conjecture Cjy: A source of symbols (hot necessarily

equiprobable) that provokes the same average intdivals
KK-1)(K-2)...(K—-—z+1) ) an equiprobable source of cardinality has the same entropy
K= @) H =log, K bits.
where z € {1,2,3,...,K + 1}, K plays the role of a A_s a result, the proposgd pragmatic method for entropy
parameter for this Cumulative Distribution Function (CDF)EStimation can be summarized in three steps:
and the probability of a first coincidence precisely at#htn 1 Estimate D by sequential observation of symbols, as
sample is given byfx (z; K) = Fx(2;K) — Fx(z — 1; K). illustrated in Figure 2, thus obtaining & that can be
Therefore, we can estimate the average number of samples gradually refined. R
drawn from the source until a first coincidence occurs as: 2 ComputeK(D) = aD? 4+ bD + ¢, with a = 0.6366,
i b= —0.8493 andc = 0.1272.
D(K) = Z o fx (z: K) ) 3 Estimate the entropy of the memoryless source, in bits,
as H = log,(K).

Fx(Z;K) =1-

r=1

which clearly depends oii. For instance, in the Birthday ) o
Problem itself, wherek = 365 days, on average, we shallA- On the polynomial approximatioR’ ~ aD? +bD + ¢
expect one birthday coincidence roughly every 24 indepen-According to Eq. 2, we define a random variabfewhose
dently consulted subjects. Figure 1 graphically presentsD Probability Mass Function (PMF) igx (z; K), and D is the
a function of K, from K = 2 to K = 2000. expectation ofX, i.e. D(K) = Ex{X}. The precise value

Now, by considering the inverse functiog(D) = K of D is obtained after the calculation dfx, as in Eq. 1,
(i.e. by exchanging axis in Figure 1), we observe a strikinfigopm which we obtain the PMFKx, and finally the average
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Stream of symbols or

—_—
Random 1-1/K)1-2/K)...(1—(Ex{X}—1)/K) =~ 0.45 (4)
source ‘ agozdghlbaza.. Another useful approximation to be used herélis- n/K) ~

? D=6 ? D2:5¢ exp(—n/K) for |n| << K. By assuming that source cardi-

o A nality, K, is high enough to allowE'x{X} << K to hold

2 3 3 (please notice that these are the cases our method is daésigne

for), we can apply this approximation to each factor on the
left of Equation 4 to obtain

@:ﬁfaw exp(=1/K) exp(—2/K) . ..exp(—(Ex {X} — 1)/K) ~ 0.45

which simplifies to

Fig. 2. Incremental estimation of the averaged number ofbsysuntil

coincidence detection. exp(—Ex{X}Ex{X}—-1)/(2K)) ~ 045

By taking the logarithm of both sides of the former expressio
X, as in Eq. 2. This indirect procedure does not show whyfollows that

the second degree polynomial is predominant insofar as the

functional dependence df on D, approximated by Eq. 3, is —Ex{X}(Ex{X} —1)/(2K) ~n(0.45)
concerned. In this Section, this quadratic character iyaed that can be finally rearranged as in Eq. 5 to highlight the
in more detail. quadratic dependency df on Ex{X}.
Figure 3 presents visual examplesfof (z; K), along with
their corresponding probability mass functiony (z; K), K ~aEx{X}* + fEx{X} (5)

for K = 200,400,800 and 1600. Still in Figure 3, the \yhereq — 211](701‘45) ~0.6261 and 8 = —a.

corresponding average values &fare pointed out, for each  Therefore, the quadratic dependency empirically adjusted
value of K, lying close tp the_ coordinates of the corresponding Eq. 3 is finally justified by Eq. 5. Notwithstanding, the
peaks of fx («; K), which, in turn, correspond to spots ofyyq nolynomials clearly have discrepant coefficients, ard w
high slopes for Fix (z; K). Given the sigmoidal shape ofgqnose that Eq. 5 should be regarded only as a confirmation of
Fx(x; K), it is expected that this high slope interval is tQne quadratic dependency empirically noticed, whereas3Eq.

be found atFx =~ 0.5. More precisely, because of theg the one we should use within the proposed method, because
skewness offx(z; K), a better approximation is given by s its petter approximation of .

Fx(Ex{X}; K) ~ 0.55 (or some value between 0.5 and 0.6).

B. Computational burden of the method
Approximation 5 can be rewritten as

Ex{X}? - Ex{X} +2KIn(0.45) ~ 0 (6)
whose roots are given by1/2)(1+ /1 — 8K In(0.45). Only

the positive root is a valid estimate & x {X}. Therefore
Ex{X}~(1/2)1+V1+64K) (7)

e We recall that, in average, we should expect one coincidence
detection evenEx { X } symbols. Moreover, according to Eqg.
7, for K >> 2 the value of Ex{X} is almost proportional
to VK. It is worth noting that this is the worst case, for
K equiprobable symbols, being the value smaller for non-
equiprobable distributions.
K =1600 Thus, after every detection, all past symbols are discarded
and a new subsequence of abalk is observed until new
detection, and so forth. Consequently, in average, a séf of
sequential observationsV( symbols) is to be split intdB =
E (X}~ 184,K=200 £, {X}~ 508 K =1600 N/VK sub-sequences.
Inside each sub-sequence, itle new symbol is compared
to all thei — 1 symbols observed after the last coincidence
detection, yieldingi(: — 1)/2 pairwise comparisons. Since
Now, becauseFx (Ex{X}; K) ~ 0.55, from Equation 1, €ach subsequence is expected to havex VK symbols,
it follows that in average, then it yields a computational burden of about
(K=1)(K—=2)...(K— Ex{X}+1) VK(VK — 1)/2 comparisons per sub-sequence, and a to-
R (XT ~ 0.45 tal of BV K (VK — 1)/2 comparisons, which simplifies to

Fy(x:K)

b 1 ‘
0 20 40 60 80 100 120

b2 4

Fig. 3. Visual examples of probability distributions féf = 200, 400, 800
and 1600.




JOURNAL OF COMMUNICATIONS AND INFORMATION SYSTEMS, VOL. 29NO. 1, MAY 2014. 32

N (VK — 1)/2. Therefore, this is the expected computational o1
burden of the proposed method for the case of a sequenge of 008
observations drawn from a random sourcediequiprobable 0.08
symbols. 007

This is less than théVK comparisons necessary to ob-
tain histograms in plug-in methods. Moreover, unlike ping-
methods that deman® >> K for a proper approximation
of the PMF, the proposed method can be used even when
N < K. That is to say that, besides its lower computational
cost, it can be further lowered through the use of smaller set el s
Of Observations (le Smallel’ Values N]) Oo 100 200 300 400 500 600 700 800 900 1000

Symbol number

Probability

I1l. EXPERIMENTS WITH DISCRETE VARIABLES Fig. 4. A typical “sparse” from the Dirichlet family of prier X' = 1000.

In agreement with the motivation underlying the prag- TABLE Il
matic approach chosen for this work, we will first deal with Average estimation biases for memoryless sources with
the emblematic source of 365 equiprobable symbols (from “sparse” distribution from the Dirichlet family of priors.
the birthday problem), and we measure its bias in several
scenarios. In this case, the known source entrop¥is=

| N | Relative bias(H — H)/H | Standard deviation|

log,(365) = 8.51 bits, for the second column in Table I, where ;8 :g'i;i; giz

this (equiprobable) source was simulated dnhdvas obtained 100 01829 0073

through the observation d¥ sequencial symbols (with at least 300 0.1795 0.047

one coincidence). Then, we applied the proposed method and 1000 01782 0.033

calculated the relative biag? — H)/H for 10* independent 3000 -0.1776 0.029

trials. Similarly, in the third column, we present the aggra

relative bias for sources whose probability distributiovere

randomly generated (thus yieldinfg < log, (365)). pragmatic bias compensation procedure is the replacenfient o

D with D + 1 in the first step of the algorithm. Indeed, with
TABLE | this compensation, relative biases in the last row of Table |
Average estimation of relative biasésg;]—H , for memoryless worsen to(ff—H)/H ~ 0.01, for the uniform distribution, but
sources ofK’ = 365 symbols, aftet\' sequential observations. it improves to~ 0.0003, for the non-uniform one. Likewise,

in the last row in Table Il, the relative bias is reduced to

N Unif distributi Random distributi . . .
| | Unitorm distrbution | Random dstributons| ~ —0.0864, which is a result comparable to that presented in

50 0.0427 0.0459 (Nemenman et al., 2002) for the same problem.
100 -0.0132 -0.0280
1000 -0.0013 -0.0159

IV. METHOD GENERALIZATION FOR DIFFERENTIAL
It is worth noting that, even for only 50 symbols (i.e., much ENTROPY ESTIMATION
less than the cardinality of the sek] = 365), the average  The entropy of continuous random variables diverges to
absolute bias is not greater tha&fic of the actual entropy infinity, and the usual approach to show this divergence éCov
of the equiprobable source. Moreover, it is also notewortldy Thomas , 1991) is that of partitioning the variable domain
that, for stationary processes, the valudotan be iteratively into regular cells of sizé\, and to reduce the size of these cells
improved, even whetk is not known. while calculating the corresponding entropi,(A). Under

To provide a comparative perspective for the proposeile requirement that Probability Density Functions (PDf€) a
method, we address the results presented by Nemenman et@htinuous inside the cells, if they are sufficiently smtie
(2002), in which the authors consider the Dirichlet famify oprobability density inside each cell tends to be uniform, so
priors. In the middle of the entropy range, typical distributionshat the corresponding entropy increases by 1 bit whenever
from these priors are “sparse”, as illustrated in Figure #he cell size is divided by 2. Therefore, entropy tends to be a
We consider here the distribution family with cardinalityinear function ofé = log,(1/A), for sufficiently small values
K =1000 and H = 5.16 bits. of A. Notice thatA may stand for bin width for 1D variables,

Table 1l shows the average estimation biases resultibin area for 2D variables, bin volume for 3D variables and so
from the proposed method, for randomly generated “spardetth.
distribution with X' = 1000 and H = 5.2 bits. Again, each  Accordingly, the differential entropy,, can be defined as
row corresponds t@0* independent experiments. The relativéhe difference betweert (§) and the reference®(5) = o
bias, for these sparse distributions, is much higher thaat whhat linearly increases 1 bit per unitary increment ®of
was found in Table |, even as compared to the worst case@énsequently), remains almost constant for small enough
the non-equiprobable sources. values ofA, as illustrated in Figure 5.

On the other hand, because we know that in all cases thBy assuming thatA plays the role of a sample neigh-
bias results from the underestimationofby about 1 to 2, a bourhood,coincidencecan be (re)defined for continuously
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t H(S) . P
1 Random ‘ . '
source B0
e N Sample counter (discrete time) |

6 Gaussian N(0,1) \
4 Uniform [~1,1] 1 HUERES - o
Commdence.
+ I? detection :

i

Fig. 5. Graphic explanation of differential entropy. : Coincidence I }

Al
|

LI Uniform [-0.5,0.5] A I

Marked |

};‘: estimated uniform differential entropy intorvals

-
h}: estimated Gaussian differential entropy \

-4 Il Il \ Il Il Il Il Il Il »
3 2 1 0 1 2 3 4 5 6

J =log,(1/A)

detection

el

valued variables as being signal sample falling inside the A +
neighbourhood of another sampl€onsequently, for small ) 5
values ofA, and a hypothetical continuous but finite variable ? D=7 ?

10 11 12

D=3 A

domain of sizeA, we can roughly arrange up t8 = A/A
samples without falling inside each other’s neighbourhood

Through this definition, we are able to estimdieas the :
entropy of a continuous-valued random variable quantired i B;LZD
about K = A/A disjoint cells. Moreover, for a sufficiently M
small A, we can further estimate the Valueh)by Comparing Fig. 6. Incremental estimation of the average number of ysintil
it to the the reference Iiné%(é). Thus, our method can beco?ﬁcidence detection, for continuously valuedgsamplamhrical samples

extended to continuous random variables as: are sequentially compared to all other samples, from thestatstart” or
. . . “resume” position, until a new sample falls inside a regidgready marked
1 Arbitrarily set a small sample neighbourhodx (see by a former sample. When it does occur for a pre-defined regiza (A),

Subsection IV-A). a coincidence is detected, the corresponding deldyi¢ recorded, and this
2 Estimate D by sequentially observing samples andr©cess is resumed from next sample.

detecting coincidences, as illustrated in Figure 6, thus

obtaining aD that can be gradually refined.
3 ComputeK (D) = aD? 4 bD + ¢, with a = 0.6366,

stop

resume —m < -
o

A. Setting and testing a coincidence neighbourhood

b= —0.8493 andc = 0.1272. Unfortunately, unlike the procedure presented in Section
4 Estimate the entropy of the quantized variable, for tHe the extension of the method toward differential entropy
chosenA, as H(A) = log,(K). imposes the choice of an arbitrary value far We would set
5 Estimate the differential entropy ds= H(A) — R(5) It to be as small as possible. But in most realistic scenarios
or, equivalently, where a limited (possibly small) numbéyY of samples is
available, aA that is too small may reduce too much the
h = H(A) + logy A (8) number of coincidences, even to zero. On the other hand, as

the proposed method is based on the averaging of intervals,

Figure 5 illustrates the results of this method for three 1§y¢ should choose & corresponding to a tradeoff between
random variables, two of them being uniformly distributed€ requirement of an approximately constant PDF inside any
and one normally (Gaussian) distributed. In that Figure, §€!l Of sizeA, and a number of coincidence withi samples
can be noticed that both differential entropy estimates that is not too small. As a rule of thumb, we can set a targeted
and s, approachlog,(2) = 1 and 0.5 log,(2me) ~ 2.047 interval, Dy, which yields the following rough\ value choice.
respectively, whereas the differential entropy of the omif  From Equation 5, we know thdb, is approximately given

PDF with a unitary domain (i.e uniform PDF from -0.5 to 0.5?y
approaches the referenfs), thus yielding a null differential Do~ K/a 9)

entropy hg (not shown in the Figure) as expected (Cover %n the other hand, we know th&t — A/A asA — 0 for any

Thomas , 1991). . L . /
. . . N _ . . uniformly distributed signal over a unitary hypercube ofjed
Another interesting point to be highlighted is that, in epltAl/L, where I stands for the space dimension. Therefore,

of the gnbourydedAcharacter of the domain assomat_ed_wnh Wdenoting the corresponding signal standard deviation in
Gaussian variablgy; also converges to a constant, indicatin L . LA .

. : TS . S ach direction ag g, whose value isrs = Y= for uniform
that there is a uniform distribution with domain size equa ] . 2v3
to A = 2" which yields the same average intendal untii Marginals, we can usé = (2v/305)" to approximate
a coincidence occurs. This is analogous to the reasoning tha (2v/305)"
supportsConjectureCy, in Section II. K~ (10)
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Please note that the induced cardinalky,diverges to infinity (becausdog,(2e)) ~ 10 bits). Therefore, by using only 100
asA goes to zero, as well & (d), but the difference betweensamples to estimate this entropy with the proposed methed, w
H(5) and R($) converges to a finite value. would expect an estimate lowered by a bias of abe015,
By applying Eg. 10 to Eq. 9, we obtainD, = in average, around which we expect an estimation standard
((2v/305)" /aA)'/? which, after some approximations, yieldsleviation of about 0.9.
1.6(3.505)" S_imilarly to the re_sults presented in S_ection II_I, with dete
— (11) variables, a bias is also clearly noticed. It is known that
0 histogram-based estimators are biased because symrhetrica
For instance, for an approximated rate of one coincidendistributed probability estimates are nonlinearly transfed
every 20 samples and a normalized variangg,= 1, one by a logarithm function, thus biasing the estimated entropy
should setA = 2885 ~ 0,014, whereas for a 3D signal toward lower values (Miller, 1955; Beirlant et al., 1997)n. |
with normalized variance in each dimension, at the sartlke proposed method, we also apply a logarithm to random
coincidence rate, we should sAt= 1'62(3'25)3 ~0.171. estimates of K, which is indeed the main cause of the
We recall that, inL-dimensional observation spaces,can noticed bias. However, the random estimatéopolynomially
be an interval, an area, a volume or a hypervolume aroufiépends on random estimates Bf which in turn are not
any observed sample (a sample neighbourhood). Theref@gnmetrically distributed, as shown in Figure 3. As a result
we may consider a segment, a square, a cube or a hyperdaigé analysis is a more difficult matter in this method than in
(i.e. figures with all edges the same lengfiA) so that histogram-based ones, and both positive or negative bases
coincidence detection can be done by simple comparisonpsfssible.
distances between samples in each dimension to a thresholBy contrast, we empirically noticed that, as the joint effec
of half the edge length. of the logarithmic transformation and the skewness Iof
Nevertheless, any arbitrar, including the one proposedestimate distribution depends on its average value, biabea
in Eq. 11, should not be used without a test. Indeed, any valp@rtially compensated through a careful choice of the tathe
of A that is small enough must lie in the asymptotically lineaPo (through the choice of, as in Eq. 11). More specifically,
part of H(5) (as illustrated in Figure 5). Therefore, one cawe noticed that by setting), to about 30, a good bias
test whether a giver is small enough by comparing (A) compensation was obtained for uniform distributions.
to 13[(2A), whose difference should be 1 bit. Alternatively, an To provide a brief comparison, it is known that the system-
equivalent test can be done with a much smaller perturbatiatic bias in histogram-based estimators can be approximate
of A, as follows: through the popula®(1/N) bias compensation method pro-
posed by Miller (1955):
- K-1
If not, then A is not small enough to allow a proper use of H~H - TON
Eqg. 8.

A~

H(A) — H(1.05A) ~0.07 bit (12)

Accordingly, if we use, for instance, a histogram with= 50
bins andN = 1000 samples (as in the last line of Table III),
V. EXPERIMENTS WITH CONTINUOUS VARIABLES we should expect a bias of about 0.024 for the uniform PDF,
In this Section, the use of the proposed method withhich is much higher than the bias presented in Table 111, for
continuous random variables in 1D, 2D and 3D is illustrateétie same number of samples.
through the definition of coincidence neighbourhood as anDespite the noticed bias, for high targeted values othe
interval of length A, a square of areal and a cube of method provides meaningful estimates even with only 100
volume A, respectively. In the 1D experiment, we sAt samples for both PDFs, though it is clearly better for umifor
according to Subsection IV-A, with an approximated rate afnes.
one coincidence every 30 samples. Four random variables werAs suggested by Beirlant et al. (1997) and references
used, namely: uniform from -1 to +1, Gaussian with unitartherein, the number of samples needed for good estimates
variance, exponential with unitary parameter and Laptaciincreases rapidly with the dimension of multivariate dgesi
with unitary parameter, respectively yielding the follogi By doing similar experiments with the same random variables
differential entropies: 1, 2.047, 1.4427 and 2.4427 bighl& over 2D and 3D domains (through multivariate samples), we
IIl shows the experimental results in terms of absolute biabtained the results presented in Table IV, that illustthe
and standard variations. both absolute biases and variances, as expected, tend to be
It is worth noticing that these results do not depend on thieduced as the number of samples increases, whereas it is
actual targeted entropy. For instance, a uniform distisout degraded by the increasing of the variable domain dimension
inside the interval £512, +512] has a differential entropy of TargetedD, was set to 30 through all experiments.
log,(1024) ~ 10 bits. Therefore, by using 100 samples to As stated in the introduction of this paper, our main inspira
estimate this entropy with the proposed method, we woulidn is the method by Ma (1980), based on the counting of state
expect an estimate lowered by a bias of abe(t13, in aver- (physical) system configuration coincidences, in the odnte
age, around which we expect an estimation error with stahdarf Statistical Mechanics. To allow for comparisons between
deviation of about 0.9. Similarly, a Laplacian distributiwith methods, we replace Ma’s definition of coincidence, in terms
parameter\ = 200 also has a differential entropy near 10 bit®f particle trajectory of motion (Ma, 1985, Ch. 25), with our
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TABLE IlI
Average estimation of absolute biages- h, for memoryless sources of continuously valued samplesh Eav corresponds ta0* independent trials ofV
sequential observations (trials without coincidences disearded).

N Uniform [-1,+1] Gaussian N(0,1) | ExponentialA = 1 Laplace =1
bias | std. dewv. bias | std. dev. bias | std. dev. bias | std. dev.
50 -0.592 1.27 -0.862 1.3 -0.737 1.2 -0.928 1.3
100 | -0.127 0.91 -0.360 0.9 -0.514 0.8 -0.548 0.9
500 | -0.018 0.37 -0.234 0.4 -0.413 0.3 -0.433 0.4
1000 | -0.003 0.26 -0.215 0.3 -0.408 0.2 -0.413 0.3
TABLE IV

Average estimation of absolute biases- k, for memoryless sources of 2D and 3D random vectors. Eachcmvesponds tal04 independent trials ofV
sequential observations (trials without coincidences diszarded).

N Uniform (2D) Gaussian (2D) Exponential (2D) Laplace (2D)
bias | std. dev. | bias | std. dev. | bias | std. dev. | bias | std. dev.
100 | 009 | 09 057 | 0.9 078 ] 07 094 08
1000 | 0.03 0.3 041 03 069 | 0.2 081 02
N Uniform (3D) Gaussian (3D) Exponential (3D) Laplace (3D)
bias | std. dev. | bias | std. dev. | bias | std. dev. | bias | std. dev.
100 -0.01 0.9 -0.73 0.9 -0.74 0.6 -1.26 0.8
1000 | 0.14 0.3 -0.60 0.3 -0.73 0.2 -1.24 0.2
genericdefinition, as presented in Section IV. Furthermore, for VI. DISCUSSION AND CONCLUSION
the reader’s conve_nience, we now present the Ma's method iy pragmatic approach for entropy estimation was proposed
terms of our notation, as follows: for both discrete and continuous random sources. This ap-

proach can be used when the amount of available data is small,
1 Arbitrarily set a small sample neighbourhodd (see even less than the cardinality of the symbol set for discrete
Subsection IV-A). sources, and it chiefly relies on the averaging of intervatd u
2 Compare the two samples in every distinct pair of signabincidences occur and on a polynomial approximation of a
samples, and count th¥, detected coincidences, out ofrfandom variable expectation. As a result, the method is very
N; = N(N —1)/2 comparisons. R simple to use, thus being potentially useful in applicadion
3 Compute the estimated set cardinality/dg, = N;/N.. Wwhere experiments are hard/expensive to be reproduced. For
4 Estimate the entropy of the quantized variable, for thiiscrete sources, the priori knowledge of set cardinality is

chosenA, aSI:II\/Ia(A) = logQ(KMa). not even required. The only requirement is that samples be
5 Estimate the differential entropy ds, = Hya(A) — independently drawn from the source (no memory).
R(8) or, equivalentlynra = Hara(A) + logy A The method extension to continuous variables is naturally

obtained through the (re)definition of a ‘coincidence’ imeo

By using Ma’s method through simulation scenarios equi\t7|_nuous domains. Indeed, some suggestions concerning inte

alent to those of Table IV, we obtained the results present\é%fs (sample neighbourhoods) for coincidence dgtectlcen ar
in Table V. presented. Nonetheless, because the only adaptatiorsaeces

to transit from discrete to continuous is a suitable definiti

It is clear that the Ma’s method is consistently superiarf coincidences, it can be further explored to allow for join
than ours, in terms of variance, which is counterbalancedtropy estimation of discrete and continuous variables th
by an increase in the associated computational burden. Mare mixed up. This possibility can be particularly useful in
precisely, Ma’s method reduces the estimator variance by fidata mining.
gathering allN samples, and then comparing al(N —1)/2 In this short text, estimation bias is only illustrated thgh
pair of samples, whereas our sequential method compaexperimental results, along with practical advices to cedu
about N(Dy — 1)/2 pairs instead (see explanation in Subi. A theoretical analysis of it is planned for future work.
section 1I-B). For instance, withV = 1000 and D, ~ 30, However, despite the noticed bias, it was also illustrated t
Ma’s method is expected to demand 499500 samples comphe proposed method provides meaningful estimates even fro
isons whereas our method demands about 14500 comparissmall datasets.
instead. On the other hand, since samples are assumed fbhe presented approach is closely related to the method
be independent, by permutating thé signal samples and proposed by Ma (1980), in the context of Statistical Me-
applying our method many times, the estimator variancedcouwdhanics, as well as to the more recent method proposed
also be reduced, but it would prevent the desirable seqalenily Nemenman et al. (2002), in the context of information
aspect of our method (for alN samples would be availableanalysis of neural (biological) responses. Ma’s methodhés t
before permutation). main source of inspiration for the new method proposed here,
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Average Ma’s method (Ma, 1980) estimation of absoll];éBki_ing h, for memoryless sources of 2D and 3D random vectors.
N Uniform (2D) Gaussian (2D) Exponential (2D) Laplace (2D)
bias | std. dev. | bias | std. dev. | bias | std. dev. | bias | std. dev.
100 | 0.13 0.6 -0.33 0.6 -0.72 0.4 -0.79 0.5
1000 | 0.03 0.1 -0.44 0.1 -0.78 0.1 -0.88 0.1
N Uniform (3D) Gaussian (3D) Exponential (3D) Laplace (3D)
bias | std. dev. | bias | std. dev. | bias | std. dev. | bias | std. dev.
100 0.23 0.6 -0.54 0.6 -0.84 0.4 -1.18 0.5
1000 | 0.13 0.1 -0.65 0.1 -0.88 0.1 -1.27 0.1

however, different from our approach, Ma’'s method courts @lemenman, 1., Bialek, W., de Ruyter van Steveninck, R., 2004
coincidences in the data set by testing all available daits,pa Entropy and information in neural spike trains: Progress on
whereas we detect coincidences sequentially and completelthe sampling problem. Physical Review E, 1-7.

reset our coincidence search after every new detectios, titNemenman, I., 2011. Coincidences and Estimation of En-
considerably reducing the computational burden, and atipw tropies of Random Variables with Large Cardinalities. En-
estimation through time (online). As for the method extensi  tropy. 13, 2013—-2023.

to handle continuous variables, there is an interestinghier Papoulis, A., Pillai, S. U., 2002. Probability, Random Vari
tween it and the K-Nearest Neighbours (K-NN) based methodables, and Stochastic Processes. McGraw-Hill, 4th edition
proposed by Kraskov et al. (2004) for mutual informatioRényi, A., 1960. On measures of information and entropy. in
estimation. Indeed, we believe that joint coincidences (or Proceedings of the Proceedings of the 4th Berkeley Sympo-
synchronized coincidences) are an interesting and poWwerfusium on Mathematics, Statistics and Probability, Berkeley
approach for easy and reliable mutual information estinsato 547-561.

in the spirit of the discussed framework.
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