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A pragmatic entropy and differential entropy
estimator for small datasets

Jugurta Montalvão, Romis Attux, and Daniel Silva,

Abstract—A pragmatic approach for entropy estimation is
presented, first for discrete variables, then in the form of an
extension for handling continuous and/or multivariate ones. It
is based on coincidence detection, and its application leads to
algorithms with three main attractive features: they are easy to
use, can be employed without anya priori knowledge concerning
source distribution (not even the alphabet cardinality K of
discrete sources) and can provide useful estimates even when
the number of samples,N , is less thanK, for discrete variables,
whereas plug-in methods typically demandN >> K for a proper
approximation of probability mass functions. Experiments done
with both discrete and continuous random variables illustrate
the simplicity of use of the proposed method, whereas numerical
comparisons to other methods show that, in spite of its simplicity,
useful results are yielded.

Index Terms—Entropy through coincidence, Small datasets,
Discrete and/or continuous variables, Uncomplicated algorithms.

I. I NTRODUCTION

T HE entropy of discrete random sources is a pivotal matter
in Information Theory (IT). The concept was defined

by Shannon and generalized by Rényi’s set of parametrized
measurements (Rényi, 1961). In both cases, the definition of
entropy depends upon the probability associated with each
symbol used by the source. Thus, when it comes to entropy
estimation, a straightforward first step is to estimate symbol
probabilities, whose representations we recognize as common
histograms. In other words, whenever we need to estimate
entropy, a natural approach is to take as many samples as
possible to build histograms and then to use these histograms
as probability estimators in Shannon’s or Rényi’s formula.
These approaches are known as plug-in methods (Beirlant et
al., 1997).

Besides the well-known entropy estimation bias (Miller,
1955), a remarkable issue of plug-in methods is that one
must first estimateK probabilities, whereK is the number of
symbols used by the source. As a consequence, for high values
of K (high cardinalities), and/or when some symbols are
associated with very low probabilities, a possibly prohibitive
number of samples may be necessary to provide reliable
estimations, not to mention thatK must be known in advance.

Motivated by these practical limitations of plug-in methods,
an interesting question can be formulated as: can we get rid of
histograms in entropy estimation? Fortunately, the answeris
‘yes’. And this answer brings together a series of interesting
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points of view. Indeed, the key event in any entropy mea-
surement is the coincidence of symbols in a sample. Strictly
speaking, any histogram-based estimator relies on coincidence
counters, since histogram bins quantify coincidences of each
symbol in a stream of symbols. However, usingK coin-
cidence detectors can be problematic. For instance, if the
number of available samples is less thanK, histogram-based
estimators are expected to perform badly, since at least one
coincidence counter is not incremented at all, thus inducing
strong estimator bias and variance. For small data sets and
discrete random variables, Bonachela et al. (2008) propose
a method to balance estimator bias and variance, along with
a very interesting point of view that elegantly links existing
methods such as Miller’s and Grassberger’s to their own
approach.

By contrast, an entropy method of estimation through co-
incidences was proposed by Ma (1980), in a journal paper,
and re-explained in a book by the same author (Ma, 1985,
Ch. 25) as a ‘method (...) in the stage of development’ to
be used in Statistical Mechanics. This author also discusses
an interesting link between IT and Statistical Mechanics, in
which he points out that ‘In information theory the number of
symbols is very small and each symbol is used many times’
so that probabilities ‘can be accurately determined.’ It was
certainly the general perception by the time his book was
written. Nonetheless, in some hard problems involving blocks
of symbols, which may occur in practical domains ranging
from multiple-input and multiple-output digital systems to
large-scale data mining, even small sets of symbols may lead
to problems of entropy estimation with a huge number of
states. In other words, nowadays, we conjecture that Ma-like
methods can also be attractive for problems belonging to a
variety of domains, wherever phenomena with a huge number
of reachable states are observed.

This seems to be the motivation behind the method proposed
by Nemenman et al. (2002), where entropy estimation through
coincidence counting was elegantly revisited in the context
of an information-theoretical analysis of neural responses
(Nemenman et al., 2004). Not surprisingly, they highlight the
benefits of such an approach when the number of samples is
smaller than the number of states — the same motivation in
Ma’s work.

Nemenman (2011) further analyses this estimator previ-
ously proposed by himself and collaborators, in 2002. His
analysis, to a certain extent, bridges the gap between entropy
and differential entropy estimation through their coincidence
counting approach, by considering random variables with large
cardinalities, and thus coming to the conclusion that thea
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priori knowledge of the cardinality of the alphabet size is not
necessary. It is noteworthy that it allows for the estimation
of differential entropies, where cardinalities tends to infinity.
Unfortunately, in spite of this open possibility, the analysed
method was not adapted to continuous random variables. By
following the same path, in (Montalvão et al., 2012) we briefly
proposed a simpler method (for discrete variables only) which
can be used without any knowledge of the cardinality of the
alphabet size, and is simple enough to be easily employed
even by experimenters unfamiliar with the theoretical bases of
statistical estimation.

In this paper, we extend this method toward continuous
multivariate random sources, keeping, however, simplicity of
use as aleitmotiv, along with the method’s suitability of
use with small datasets. In order to properly introduce this
method extension, in Section II, we first recall the method
proposed in (Montalvão et al., 2012), along with some new
theoretical explanations of an important approximation used
there and an analysis of the computational burden associated
with it. Experimental results with discrete random variables
are presented in Section III. The method generalization, which,
as already stated, is the main novelty brought forward in this
work, is presented in Section IV, whereas experimental results
with continuous random variables are presented in Section V.
A section devoted to the conclusions and to a final discussion
closes the paper.

II. PROPOSED METHOD FOR ENTROPY ESTIMATION

Instead of counting coincidences of each symbol, as in
histogram-based approaches, we address entropy estimation
by detecting any coincidence of symbols. For memoryless
random sources, this unconstrained coincidence detectionis
closely related to the classical ‘Birthday Problem’, presented
in textbooks of probability (Papoulis, 2002). By generalizing
this problem, letK be the number of equiprobable symbols – if
they are independently drawn from this source, the probability
of repeating one or more symbols by thex-th sample is given
by:

FX(x;K) = 1− K(K − 1)(K − 2) . . . (K − x+ 1)

Kx
(1)

where x ∈ {1, 2, 3, . . . ,K + 1}, K plays the role of a
parameter for this Cumulative Distribution Function (CDF),
and the probability of a first coincidence precisely at thex-th
sample is given byfX(x;K) = FX(x;K) − FX(x − 1;K).
Therefore, we can estimate the average number of samples
drawn from the source until a first coincidence occurs as:

D(K) =
K+1
∑

x=1

xfX(x;K) (2)

which clearly depends onK. For instance, in the Birthday
Problem itself, whereK = 365 days, on average, we shall
expect one birthday coincidence roughly every 24 indepen-
dently consulted subjects. Figure 1 graphically presents Das
a function ofK, from K = 2 to K = 2000.

Now, by considering the inverse function,g(D) = K
(i.e. by exchanging axis in Figure 1), we observe a striking

Fig. 1. Average number of symbols,D, drawn from a white source ofK
equiprobable symbols until a first coincidence occurs.

quadratic functional dependence, which can be suitably ap-
proximated as in Eq. 3.

K ≈ g(D) = aD2 + bD + c (3)

Indeed, through squared error minimization, we obtaina =
0.6366, b = −0.8493 and c = 0.1272, which yields a Mean
Squared Error betweenK and g(D) of about 10−6, inside
the intervalD(1) = 2 to D(2000) ≈ 56.7. This polynomial
approximation is a key aspect of the method proposed here.

On the other hand, in Shannon’s definition of entropy,
as well as in Rényi’s generalization, whenever all theK
symbols of a memoryless random source are equiprobable,
the source entropy, in bits, equalslog2(K). In other words,
the entropy,H , of a given non-equiprobable source informs
us that there is an “equivalent” source of2H equiprobable
symbols. By keeping this in mind, we now may consider again
the non-equiprobable source of symbols. Clearly, we still may
empirically estimatêD by sequentially observing symbols and
averaging the number of symbols until a coincidence occurs,as
in Figure 2. Although the sources are no longer equiprobable,
the measured̂D does still point out a hypothetical equiprob-
able source ofK̂ symbols that could provoke the very same
average interval. Thus, we conjecture that
Conjecture C0: A source of symbols (not necessarily
equiprobable) that provokes the same average intervalD as
an equiprobable source of cardinalityK has the same entropy
H = log2 K bits.

As a result, the proposed pragmatic method for entropy
estimation can be summarized in three steps:

1 EstimateD by sequential observation of symbols, as
illustrated in Figure 2, thus obtaining âD that can be
gradually refined.

2 ComputeK̂(D̂) = aD̂2 + bD̂ + c, with a = 0.6366,
b = −0.8493 andc = 0.1272.

3 Estimate the entropy of the memoryless source, in bits,
asĤ = log2(K̂).

A. On the polynomial approximationK ≈ aD2 + bD + c

According to Eq. 2, we define a random variableX whose
Probability Mass Function (PMF) isfX(x;K), andD is the
expectation ofX , i.e. D(K) = EX{X}. The precise value
of D is obtained after the calculation ofFX , as in Eq. 1,
from which we obtain the PMFfX , and finally the average
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Fig. 2. Incremental estimation of the averaged number of symbols until
coincidence detection.

X , as in Eq. 2. This indirect procedure does not show why
the second degree polynomial is predominant insofar as the
functional dependence ofK on D, approximated by Eq. 3, is
concerned. In this Section, this quadratic character is analyzed
in more detail.

Figure 3 presents visual examples ofFX(x;K), along with
their corresponding probability mass functions,fX(x;K),
for K = 200, 400, 800 and 1600. Still in Figure 3, the
corresponding average values ofX are pointed out, for each
value ofK, lying close to the coordinates of the corresponding
peaks offX(x;K), which, in turn, correspond to spots of
high slopes forFX(x;K). Given the sigmoidal shape of
FX(x;K), it is expected that this high slope interval is to
be found atFX ≈ 0.5. More precisely, because of the
skewness offX(x;K), a better approximation is given by
FX(EX{X};K) ≈ 0.55 (or some value between 0.5 and 0.6).

Fig. 3. Visual examples of probability distributions forK = 200, 400, 800

and1600.

Now, becauseFX(EX{X};K) ≈ 0.55, from Equation 1,
it follows that

(K − 1)(K − 2) . . . (K − EX{X}+ 1)

KEX{X} ≈ 0.45

or

(1− 1/K)(1− 2/K) . . . (1− (EX{X}− 1)/K) ≈ 0.45 (4)

Another useful approximation to be used here is(1−n/K) ≈
exp(−n/K) for |n| << K. By assuming that source cardi-
nality, K, is high enough to allowEX{X} << K to hold
(please notice that these are the cases our method is designed
for), we can apply this approximation to each factor on the
left of Equation 4 to obtain

exp(−1/K) exp(−2/K) . . . exp(−(EX{X} − 1)/K) ≈ 0.45

which simplifies to

exp(−EX{X}(EX{X} − 1)/(2K)) ≈ 0.45

By taking the logarithm of both sides of the former expression,
it follows that

−EX{X}(EX{X} − 1)/(2K) ≈ ln(0.45)

that can be finally rearranged as in Eq. 5 to highlight the
quadratic dependency ofK on EX{X}.

K ≈ αEX{X}2 + βEX{X} (5)

whereα = −1
2 ln(0.45) ≈ 0.6261 andβ = −α.

Therefore, the quadratic dependency empirically adjusted
in Eq. 3 is finally justified by Eq. 5. Notwithstanding, the
two polynomials clearly have discrepant coefficients, and we
propose that Eq. 5 should be regarded only as a confirmation of
the quadratic dependency empirically noticed, whereas Eq.3
is the one we should use within the proposed method, because
of its better approximation ofK.

B. Computational burden of the method

Approximation 5 can be rewritten as

EX{X}2 − EX{X}+ 2K ln(0.45) ≈ 0 (6)

whose roots are given by:(1/2)(1±
√

1− 8K ln(0.45). Only
the positive root is a valid estimate ofEX{X}. Therefore

EX{X} ≈ (1/2)(1 +
√
1 + 6.4K) (7)

We recall that, in average, we should expect one coincidence
detection everyEX{X} symbols. Moreover, according to Eq.
7, for K >> 2 the value ofEX{X} is almost proportional
to

√
K. It is worth noting that this is the worst case, for

K equiprobable symbols, being the value smaller for non-
equiprobable distributions.

Thus, after every detection, all past symbols are discarded
and a new subsequence of about

√
K is observed until new

detection, and so forth. Consequently, in average, a set ofN
sequential observations (N symbols) is to be split intoB =
N/

√
K sub-sequences.

Inside each sub-sequence, theith new symbol is compared
to all the i − 1 symbols observed after the last coincidence
detection, yieldingi(i − 1)/2 pairwise comparisons. Since
each subsequence is expected to haveD ≈

√
K symbols,

in average, then it yields a computational burden of about√
K(

√
K − 1)/2 comparisons per sub-sequence, and a to-

tal of B
√
K(

√
K − 1)/2 comparisons, which simplifies to
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N(
√
K − 1)/2. Therefore, this is the expected computational

burden of the proposed method for the case of a sequence ofN
observations drawn from a random source ofK equiprobable
symbols.

This is less than theNK comparisons necessary to ob-
tain histograms in plug-in methods. Moreover, unlike plug-in
methods that demandN >> K for a proper approximation
of the PMF, the proposed method can be used even when
N < K. That is to say that, besides its lower computational
cost, it can be further lowered through the use of smaller sets
of observations (i.e. smaller values onN ).

III. E XPERIMENTS WITH DISCRETE VARIABLES

In agreement with the motivation underlying the prag-
matic approach chosen for this work, we will first deal with
the emblematic source of 365 equiprobable symbols (from
the birthday problem), and we measure its bias in several
scenarios. In this case, the known source entropy isH =
log2(365) = 8.51 bits, for the second column in Table I, where
this (equiprobable) source was simulated andD̂ was obtained
through the observation ofN sequencial symbols (with at least
one coincidence). Then, we applied the proposed method and
calculated the relative bias(Ĥ −H)/H for 104 independent
trials. Similarly, in the third column, we present the average
relative bias for sources whose probability distributionswere
randomly generated (thus yieldingH ≤ log2(365)).

TABLE I
Average estimation of relative biases

(

Ĥ−H

H

)

, for memoryless
sources ofK = 365 symbols, afterN sequential observations.

N Uniform distribution Random distributions

50 -0.0427 -0.0459

100 -0.0132 -0.0280

1000 -0.0013 -0.0159

It is worth noting that, even for only 50 symbols (i.e., much
less than the cardinality of the set,K = 365), the average
absolute bias is not greater than5% of the actual entropy
of the equiprobable source. Moreover, it is also noteworthy
that, for stationary processes, the value ofD̂ can be iteratively
improved, even whenK is not known.

To provide a comparative perspective for the proposed
method, we address the results presented by Nemenman et al.
(2002), in which the authors consider the Dirichlet family of
priors. In the middle of the entropy range, typical distributions
from these priors are “sparse”, as illustrated in Figure 4.
We consider here the distribution family with cardinality
K = 1000 andH = 5.16 bits.

Table II shows the average estimation biases resulting
from the proposed method, for randomly generated “sparse”
distribution withK = 1000 andH ≈ 5.2 bits. Again, each
row corresponds to104 independent experiments. The relative
bias, for these sparse distributions, is much higher than what
was found in Table I, even as compared to the worst case of
the non-equiprobable sources.

On the other hand, because we know that in all cases the
bias results from the underestimation ofD̂ by about 1 to 2, a

Fig. 4. A typical “sparse” from the Dirichlet family of priors, K = 1000.

TABLE II
Average estimation biases for memoryless sources with

“sparse” distribution from the Dirichlet family of priors.

N Relative bias:(Ĥ − H)/H Standard deviation

10 -0.2767 0.237

30 -0.1918 0.131

100 -0.1829 0.073

300 -0.1795 0.047

1000 -0.1782 0.033

3000 -0.1776 0.029

pragmatic bias compensation procedure is the replacement of
D̂ with D̂ + 1 in the first step of the algorithm. Indeed, with
this compensation, relative biases in the last row of Table I
worsen to(Ĥ−H)/H ≈ 0.01, for the uniform distribution, but
it improves to≈ 0.0003, for the non-uniform one. Likewise,
in the last row in Table II, the relative bias is reduced to
≈ −0.0864, which is a result comparable to that presented in
(Nemenman et al., 2002) for the same problem.

IV. M ETHOD GENERALIZATION FOR DIFFERENTIAL

ENTROPY ESTIMATION

The entropy of continuous random variables diverges to
infinity, and the usual approach to show this divergence (Cover
& Thomas , 1991) is that of partitioning the variable domain
into regular cells of size∆, and to reduce the size of these cells
while calculating the corresponding entropy,H(∆). Under
the requirement that Probability Density Functions (PDF) are
continuous inside the cells, if they are sufficiently small,the
probability density inside each cell tends to be uniform, so
that the corresponding entropy increases by 1 bit whenever
the cell size is divided by 2. Therefore, entropy tends to be a
linear function ofδ = log2(1/∆), for sufficiently small values
of ∆. Notice that∆ may stand for bin width for 1D variables,
bin area for 2D variables, bin volume for 3D variables and so
forth.

Accordingly, the differential entropy,h, can be defined as
the difference betweenH(δ) and the referenceR(δ) = δ
that linearly increases 1 bit per unitary increment ofδ.
Consequently,h remains almost constant for small enough
values of∆, as illustrated in Figure 5.

By assuming that∆ plays the role of a sample neigh-
bourhood,coincidencecan be (re)defined for continuously
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Fig. 5. Graphic explanation of differential entropy.

valued variables as beinga signal sample falling inside the
neighbourhood of another sample. Consequently, for small
values of∆, and a hypothetical continuous but finite variable
domain of sizeA, we can roughly arrange up toK = A/∆
samples without falling inside each other’s neighbourhood.

Through this definition, we are able to estimateH as the
entropy of a continuous-valued random variable quantized in
aboutK = A/∆ disjoint cells. Moreover, for a sufficiently
small∆, we can further estimate the value ofh by comparing
it to the the reference lineR(δ). Thus, our method can be
extended to continuous random variables as:

1 Arbitrarily set a small sample neighbourhood∆ (see
Subsection IV-A).

2 EstimateD by sequentially observing samples and
detecting coincidences, as illustrated in Figure 6, thus
obtaining aD̂ that can be gradually refined.

3 ComputeK̂(D̂) = aD̂2 + bD̂ + c, with a = 0.6366,
b = −0.8493 andc = 0.1272.

4 Estimate the entropy of the quantized variable, for the
chosen∆, asĤ(∆) = log2(K̂).

5 Estimate the differential entropy aŝh = Ĥ(∆) − R(δ)
or, equivalently,

ĥ = Ĥ(∆) + log2 ∆ (8)

Figure 5 illustrates the results of this method for three 1D
random variables, two of them being uniformly distributed,
and one normally (Gaussian) distributed. In that Figure, it
can be noticed that both differential entropy estimates,ĥ1

and ĥ2, approachlog2(2) = 1 and 0.5 log2(2πe) ≈ 2.047,
respectively, whereas the differential entropy of the uniform
PDF with a unitary domain (i.e uniform PDF from -0.5 to 0.5)
approaches the referenceR(δ), thus yielding a null differential
entropy ĥ0 (not shown in the Figure) as expected (Cover &
Thomas , 1991).

Another interesting point to be highlighted is that, in spite
of the unbounded character of the domain associated with the
Gaussian variable,̂h2 also converges to a constant, indicating
that there is a uniform distribution with domain size equal
to A = 2h which yields the same average intervalD̂ until
a coincidence occurs. This is analogous to the reasoning that
supportsConjectureC0, in Section II.

Fig. 6. Incremental estimation of the average number of symbols until
coincidence detection, for continuously valued samples. Numerical samples
are sequentially compared to all other samples, from the latest “start” or
“resume” position, until a new sample falls inside a region already marked
by a former sample. When it does occur for a pre-defined regionsize (∆),
a coincidence is detected, the corresponding delay (D) is recorded, and this
process is resumed from next sample.

A. Setting and testing a coincidence neighbourhood

Unfortunately, unlike the procedure presented in Section
II, the extension of the method toward differential entropy
imposes the choice of an arbitrary value for∆. We would set
it to be as small as possible. But in most realistic scenarios
where a limited (possibly small) numberN of samples is
available, a∆ that is too small may reduce too much the
number of coincidences, even to zero. On the other hand, as
the proposed method is based on the averaging of intervals,
we should choose a∆ corresponding to a tradeoff between
the requirement of an approximately constant PDF inside any
cell of size∆, and a number of coincidence withinN samples
that is not too small. As a rule of thumb, we can set a targeted
interval,D0, which yields the following rough∆ value choice.

From Equation 5, we know thatD0 is approximately given
by

D0 ≈
√

K/α (9)

On the other hand, we know thatK → A/∆ as∆ → 0 for any
uniformly distributed signal over a unitary hypercube of edge
A1/L, whereL stands for the space dimension. Therefore,
by denoting the corresponding signal standard deviation in
each direction asσS , whose value isσS =

L
√
A

2
√
3

for uniform

marginals, we can useA = (2
√
3σS)

L to approximate

K ≈ (2
√
3σS)

L

∆
(10)
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Please note that the induced cardinality,K, diverges to infinity
as∆ goes to zero, as well asH(δ), but the difference between
H(δ) andR(δ) converges to a finite value.
By applying Eq. 10 to Eq. 9, we obtainD0 ≈
((2

√
3σS)

L/α∆)1/2 which, after some approximations, yields

∆ ≈ 1.6(3.5σS)
L

D2
0

(11)

For instance, for an approximated rate of one coincidence
every 20 samples and a normalized variance,σ2

S = 1, one
should set∆ = 1.6(3.5)

202 ≈ 0.014, whereas for a 3D signal
with normalized variance in each dimension, at the same
coincidence rate, we should set∆ = 1.6(3.5)3

202 ≈ 0.171.
We recall that, inL-dimensional observation spaces,∆ can

be an interval, an area, a volume or a hypervolume around
any observed sample (a sample neighbourhood). Therefore,
we may consider a segment, a square, a cube or a hypercube
(i.e. figures with all edges the same lengthL

√
∆) so that

coincidence detection can be done by simple comparison of
distances between samples in each dimension to a threshold
of half the edge length.

Nevertheless, any arbitrary∆, including the one proposed
in Eq. 11, should not be used without a test. Indeed, any value
of ∆ that is small enough must lie in the asymptotically linear
part of H(δ) (as illustrated in Figure 5). Therefore, one can
test whether a given∆ is small enough by comparinĝH(∆)
to Ĥ(2∆), whose difference should be 1 bit. Alternatively, an
equivalent test can be done with a much smaller perturbation
of ∆, as follows:

Ĥ(∆)− Ĥ(1.05∆)
?≈ 0.07 bit (12)

If not, then∆ is not small enough to allow a proper use of
Eq. 8.

V. EXPERIMENTS WITH CONTINUOUS VARIABLES

In this Section, the use of the proposed method with
continuous random variables in 1D, 2D and 3D is illustrated
through the definition of coincidence neighbourhood as an
interval of length∆, a square of area∆ and a cube of
volume ∆, respectively. In the 1D experiment, we set∆
according to Subsection IV-A, with an approximated rate of
one coincidence every 30 samples. Four random variables were
used, namely: uniform from -1 to +1, Gaussian with unitary
variance, exponential with unitary parameter and Laplacian
with unitary parameter, respectively yielding the following
differential entropies: 1, 2.047, 1.4427 and 2.4427 bits. Table
III shows the experimental results in terms of absolute bias
and standard variations.

It is worth noticing that these results do not depend on the
actual targeted entropy. For instance, a uniform distribution
inside the interval [−512,+512] has a differential entropy of
log2(1024) ≈ 10 bits. Therefore, by using 100 samples to
estimate this entropy with the proposed method, we would
expect an estimate lowered by a bias of about−0.13, in aver-
age, around which we expect an estimation error with standard
deviation of about 0.9. Similarly, a Laplacian distribution with
parameterλ = 200 also has a differential entropy near 10 bits

(becauselog2(2eλ) ≈ 10 bits). Therefore, by using only 100
samples to estimate this entropy with the proposed method, we
would expect an estimate lowered by a bias of about−0.55,
in average, around which we expect an estimation standard
deviation of about 0.9.

Similarly to the results presented in Section III, with discrete
variables, a bias is also clearly noticed. It is known that
histogram-based estimators are biased because symmetrically
distributed probability estimates are nonlinearly transformed
by a logarithm function, thus biasing the estimated entropy
toward lower values (Miller, 1955; Beirlant et al., 1997) . In
the proposed method, we also apply a logarithm to random
estimates ofK, which is indeed the main cause of the
noticed bias. However, the random estimate ofK polynomially
depends on random estimates ofD, which in turn are not
symmetrically distributed, as shown in Figure 3. As a result,
bias analysis is a more difficult matter in this method than in
histogram-based ones, and both positive or negative biasesare
possible.

By contrast, we empirically noticed that, as the joint effect
of the logarithmic transformation and the skewness ofD
estimate distribution depends on its average value, bias can be
partially compensated through a careful choice of the targeted
D0 (through the choice of∆, as in Eq. 11). More specifically,
we noticed that by settingD0 to about 30, a good bias
compensation was obtained for uniform distributions.

To provide a brief comparison, it is known that the system-
atic bias in histogram-based estimators can be approximated
through the popularO(1/N) bias compensation method pro-
posed by Miller (1955):

Ĥ ≈ H − K − 1

2N

Accordingly, if we use, for instance, a histogram withK = 50
bins andN = 1000 samples (as in the last line of Table III),
we should expect a bias of about 0.024 for the uniform PDF,
which is much higher than the bias presented in Table III, for
the same number of samples.

Despite the noticed bias, for high targeted values ofh, the
method provides meaningful estimates even with only 100
samples for both PDFs, though it is clearly better for uniform
ones.

As suggested by Beirlant et al. (1997) and references
therein, the number of samples needed for good estimates
increases rapidly with the dimension of multivariate densities.
By doing similar experiments with the same random variables
over 2D and 3D domains (through multivariate samples), we
obtained the results presented in Table IV, that illustratethat
both absolute biases and variances, as expected, tend to be
reduced as the number of samples increases, whereas it is
degraded by the increasing of the variable domain dimension.
TargetedD0 was set to 30 through all experiments.

As stated in the introduction of this paper, our main inspira-
tion is the method by Ma (1980), based on the counting of state
(physical) system configuration coincidences, in the context
of Statistical Mechanics. To allow for comparisons between
methods, we replace Ma’s definition of coincidence, in terms
of particle trajectory of motion (Ma, 1985, Ch. 25), with our
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TABLE III
Average estimation of absolute biasesĥ− h, for memoryless sources of continuously valued samples. Each row corresponds to104 independent trials ofN

sequential observations (trials without coincidences arediscarded).

N Uniform [-1,+1] Gaussian N(0,1) Exponentialλ = 1 Laplaceλ = 1

bias std. dev. bias std. dev. bias std. dev. bias std. dev.

50 -0.592 1.27 -0.862 1.3 -0.737 1.2 -0.928 1.3

100 -0.127 0.91 -0.360 0.9 -0.514 0.8 -0.548 0.9

500 -0.018 0.37 -0.234 0.4 -0.413 0.3 -0.433 0.4

1000 -0.003 0.26 -0.215 0.3 -0.408 0.2 -0.413 0.3

TABLE IV
Average estimation of absolute biasesĥ− h, for memoryless sources of 2D and 3D random vectors. Each rowcorresponds to104 independent trials ofN

sequential observations (trials without coincidences arediscarded).

N Uniform (2D) Gaussian (2D) Exponential (2D) Laplace (2D)

bias std. dev. bias std. dev. bias std. dev. bias std. dev.

100 -0.09 0.9 -0.57 0.9 -0.78 0.7 -0.94 0.8

1000 0.03 0.3 -0.41 0.3 -0.69 0.2 -0.81 0.2

N Uniform (3D) Gaussian (3D) Exponential (3D) Laplace (3D)

bias std. dev. bias std. dev. bias std. dev. bias std. dev.

100 -0.01 0.9 -0.73 0.9 -0.74 0.6 -1.26 0.8

1000 0.14 0.3 -0.60 0.3 -0.73 0.2 -1.24 0.2

genericdefinition, as presented in Section IV. Furthermore, for
the reader’s convenience, we now present the Ma’s method in
terms of our notation, as follows:

1 Arbitrarily set a small sample neighbourhood∆ (see
Subsection IV-A).

2 Compare the two samples in every distinct pair of signal
samples, and count theNc detected coincidences, out of
Nt = N(N − 1)/2 comparisons.

3 Compute the estimated set cardinality asK̂Ma = Nt/Nc.
4 Estimate the entropy of the quantized variable, for the

chosen∆, asĤMa(∆) = log2(K̂Ma).
5 Estimate the differential entropy aŝhMa = ĤMa(∆) −

R(δ) or, equivalently,̂hMa = ĤMa(∆) + log2 ∆

By using Ma’s method through simulation scenarios equiv-
alent to those of Table IV, we obtained the results presented
in Table V.

It is clear that the Ma’s method is consistently superior
than ours, in terms of variance, which is counterbalanced
by an increase in the associated computational burden. More
precisely, Ma’s method reduces the estimator variance by first
gathering allN samples, and then comparing allN(N − 1)/2
pair of samples, whereas our sequential method compares
aboutN(D0 − 1)/2 pairs instead (see explanation in Sub-
section II-B). For instance, withN = 1000 and D0 ≈ 30,
Ma’s method is expected to demand 499500 samples compar-
isons whereas our method demands about 14500 comparisons
instead. On the other hand, since samples are assumed to
be independent, by permutating theN signal samples and
applying our method many times, the estimator variance could
also be reduced, but it would prevent the desirable sequential
aspect of our method (for allN samples would be available
before permutation).

VI. D ISCUSSION AND CONCLUSION

A pragmatic approach for entropy estimation was proposed
for both discrete and continuous random sources. This ap-
proach can be used when the amount of available data is small,
even less than the cardinality of the symbol set for discrete
sources, and it chiefly relies on the averaging of intervals until
coincidences occur and on a polynomial approximation of a
random variable expectation. As a result, the method is very
simple to use, thus being potentially useful in applications
where experiments are hard/expensive to be reproduced. For
discrete sources, thea priori knowledge of set cardinality is
not even required. The only requirement is that samples be
independently drawn from the source (no memory).

The method extension to continuous variables is naturally
obtained through the (re)definition of a ‘coincidence’ in con-
tinuous domains. Indeed, some suggestions concerning inter-
vals (sample neighbourhoods) for coincidence detection are
presented. Nonetheless, because the only adaptation necessary
to transit from discrete to continuous is a suitable definition
of coincidences, it can be further explored to allow for joint
entropy estimation of discrete and continuous variables that
are mixed up. This possibility can be particularly useful in
data mining.

In this short text, estimation bias is only illustrated through
experimental results, along with practical advices to reduce
it. A theoretical analysis of it is planned for future work.
However, despite the noticed bias, it was also illustrated that
the proposed method provides meaningful estimates even from
small datasets.

The presented approach is closely related to the method
proposed by Ma (1980), in the context of Statistical Me-
chanics, as well as to the more recent method proposed
by Nemenman et al. (2002), in the context of information
analysis of neural (biological) responses. Ma’s method is the
main source of inspiration for the new method proposed here,
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TABLE V
Average Ma’s method (Ma, 1980) estimation of absolute biases ĥ− h, for memoryless sources of 2D and 3D random vectors.

N Uniform (2D) Gaussian (2D) Exponential (2D) Laplace (2D)

bias std. dev. bias std. dev. bias std. dev. bias std. dev.

100 0.13 0.6 -0.33 0.6 -0.72 0.4 -0.79 0.5

1000 0.03 0.1 -0.44 0.1 -0.78 0.1 -0.88 0.1

N Uniform (3D) Gaussian (3D) Exponential (3D) Laplace (3D)

bias std. dev. bias std. dev. bias std. dev. bias std. dev.

100 0.23 0.6 -0.54 0.6 -0.84 0.4 -1.18 0.5

1000 0.13 0.1 -0.65 0.1 -0.88 0.1 -1.27 0.1

however, different from our approach, Ma’s method counts all
coincidences in the data set by testing all available data pairs,
whereas we detect coincidences sequentially and completely
reset our coincidence search after every new detection, thus
considerably reducing the computational burden, and allowing
estimation through time (online). As for the method extension
to handle continuous variables, there is an interesting link be-
tween it and the K-Nearest Neighbours (K-NN) based method
proposed by Kraskov et al. (2004) for mutual information
estimation. Indeed, we believe that joint coincidences (or
synchronized coincidences) are an interesting and powerful
approach for easy and reliable mutual information estimators,
in the spirit of the discussed framework.
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